Theorem 1. A non-negative f(x) is integrable on [a,b]. Then, $f^2(x)$ is integrable on [a,b].

Proof. Since f is integrable, it is bounded. Hence, we have $0 \le f(x) \le M$ for some constant M.

In addition, given $\epsilon > 0$ there exists $\delta > 0$ such that

$$|U_f(P) - L_f(P)| < \frac{\epsilon}{2M}$$

holds if $|P| < \delta$. Namely,

$$\frac{\epsilon}{2M} > U_f(P) - L_f(P) = \sum_{i=1}^{n} (x_i - x_{i-1})(M_i - m_i).$$

where $P = \{x_i\}_{i=0}^n$, $M_i = \sup_{[x_{i-1}, x_i]} f$, and $m_i = \inf_{[x_{i-1}, x_i]} f$. Now, $f \ge 0$ implies

$$M_i^2 = \sup_{[x_{i-1}, x_i]} f^2,$$
 $m_i^2 = \inf_{[x_{i-1}, x_i]} f^2.$

Moreover, $0 \le f(x) \le M$ yields $0 \le m_i, M_i \le M$. Hence,

$$|U_{f^{2}}(P) - L_{f^{2}}(P)| = \sum_{i=1}^{n} (x_{i} - x_{i-1})(M_{i}^{2} - m_{i}^{2})$$

$$= \sum_{i=1}^{n} (x_{i} - x_{i-1})(M_{i} - m_{i})(M_{i} + m_{i})$$

$$\leq \sum_{i=1}^{n} (x_{i} - x_{i-1})(M_{i} - m_{i})(2M)$$

$$= 2M|U_{f}(P) - L_{f}(P)| < \epsilon.$$

Thus, f^2 is integrable on [a, b].