Theorem 1. A non-negative $f(x)$ is integrable on $[a, b]$. Then, $f^{2}(x)$ is integrable on $[a, b]$.
Proof. Since f is integrable, it is bounded. Hence, we have $0 \leq f(x) \leq M$ for some constant M.

In addition, given $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|U_{f}(P)-L_{f}(P)\right|<\frac{\epsilon}{2 M}
$$

holds if $|P|<\delta$. Namely,

$$
\frac{\epsilon}{2 M}>U_{f}(P)-L_{f}(P)=\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(M_{i}-m_{i}\right)
$$

where $P=\left\{x_{i}\right\}_{i=0}^{n}, M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f$, and $m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f$.
Now, $f \geq 0$ implies

$$
M_{i}^{2}=\sup _{\left[x_{i-1}, x_{i}\right]} f^{2}, \quad \quad m_{i}^{2}=\inf _{\left[x_{i-1}, x_{i}\right]} f^{2}
$$

Moreover, $0 \leq f(x) \leq M$ yields $0 \leq m_{i}, M_{i} \leq M$. Hence,

$$
\begin{aligned}
\left|U_{f^{2}}(P)-L_{f^{2}}(P)\right| & =\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(M_{i}^{2}-m_{i}^{2}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(M_{i}-m_{i}\right)\left(M_{i}+m_{i}\right) \\
& \leq \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)\left(M_{i}-m_{i}\right)(2 M) \\
& =2 M\left|U_{f}(P)-L_{f}(P)\right|<\epsilon
\end{aligned}
$$

Thus, f^{2} is integrable on $[a, b]$.

